Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Nat Genet ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684900

RESUMEN

Despite linkage to chromosome 16q in 1996, the mutation causing spinocerebellar ataxia type 4 (SCA4), a late-onset sensory and cerebellar ataxia, remained unknown. Here, using long-read single-strand whole-genome sequencing (LR-GS), we identified a heterozygous GGC-repeat expansion in a large Utah pedigree encoding polyglycine (polyG) in zinc finger homeobox protein 3 (ZFHX3), also known as AT-binding transcription factor 1 (ATBF1). We queried 6,495 genome sequencing datasets and identified the repeat expansion in seven additional pedigrees. Ultrarare DNA variants near the repeat expansion indicate a common distant founder event in Sweden. Intranuclear ZFHX3-p62-ubiquitin aggregates were abundant in SCA4 basis pontis neurons. In fibroblasts and induced pluripotent stem cells, the GGC expansion led to increased ZFHX3 protein levels and abnormal autophagy, which were normalized with small interfering RNA-mediated ZFHX3 knockdown in both cell types. Improving autophagy points to a therapeutic avenue for this novel polyG disease. The coding GGC-repeat expansion in an extremely G+C-rich region was not detectable by short-read whole-exome sequencing, which demonstrates the power of LR-GS for variant discovery.

3.
Nature ; 626(8001): 1084-1093, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38355799

RESUMEN

The house mouse (Mus musculus) is an exceptional model system, combining genetic tractability with close evolutionary affinity to humans1,2. Mouse gestation lasts only 3 weeks, during which the genome orchestrates the astonishing transformation of a single-cell zygote into a free-living pup composed of more than 500 million cells. Here, to establish a global framework for exploring mammalian development, we applied optimized single-cell combinatorial indexing3 to profile the transcriptional states of 12.4 million nuclei from 83 embryos, precisely staged at 2- to 6-hour intervals spanning late gastrulation (embryonic day 8) to birth (postnatal day 0). From these data, we annotate hundreds of cell types and explore the ontogenesis of the posterior embryo during somitogenesis and of kidney, mesenchyme, retina and early neurons. We leverage the temporal resolution and sampling depth of these whole-embryo snapshots, together with published data4-8 from earlier timepoints, to construct a rooted tree of cell-type relationships that spans the entirety of prenatal development, from zygote to birth. Throughout this tree, we systematically nominate genes encoding transcription factors and other proteins as candidate drivers of the in vivo differentiation of hundreds of cell types. Remarkably, the most marked temporal shifts in cell states are observed within one hour of birth and presumably underlie the massive physiological adaptations that must accompany the successful transition of a mammalian fetus to life outside the womb.


Asunto(s)
Animales Recién Nacidos , Embrión de Mamíferos , Desarrollo Embrionario , Gástrula , Análisis de la Célula Individual , Imagen de Lapso de Tiempo , Animales , Femenino , Ratones , Embarazo , Animales Recién Nacidos/embriología , Animales Recién Nacidos/genética , Diferenciación Celular/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Desarrollo Embrionario/genética , Gástrula/citología , Gástrula/embriología , Gastrulación/genética , Riñón/citología , Riñón/embriología , Mesodermo/citología , Mesodermo/enzimología , Neuronas/citología , Neuronas/metabolismo , Retina/citología , Retina/embriología , Somitos/citología , Somitos/embriología , Factores de Tiempo , Factores de Transcripción/genética , Transcripción Genética , Especificidad de Órganos/genética
4.
Clin Genet ; 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378010

RESUMEN

Skeletal dysplasias (SKDs) are a heterogeneous group of more than 750 genetic disorders characterized by abnormal development, growth, and maintenance of bones or cartilage in the human skeleton. SKDs are often caused by variants in early patterning genes and in many cases part of multiple malformation syndromes and occur in combination with non-skeletal phenotypes. The aim of this study was to investigate the underlying genetic cause of congenital SKDs in highly consanguineous Pakistani families, as well as in sporadic and familial SKD cases from India using multigene panel sequencing analysis. Therefore, we performed panel sequencing of 386 bone-related genes in 7 highly consanguineous families from Pakistan and 27 cases from India affected with SKDs. In the highly consanguineous families, we were able to identify the underlying genetic cause in five out of seven families, resulting in a diagnostic yield of 71%. Whereas, in the sporadic and familial SKD cases, we identified 12 causative variants, corresponding to a diagnostic yield of 44%. The genetic heterogeneity in our cohorts was very high and we were able to detect various types of variants, including missense, nonsense, and frameshift variants, across multiple genes known to cause different types of SKDs. In conclusion, panel sequencing proved to be a highly effective way to decipher the genetic basis of SKDs in highly consanguineous families as well as sporadic and or familial cases from South Asia. Furthermore, our findings expand the allelic spectrum of skeletal dysplasias.

5.
Am J Hum Genet ; 111(2): 338-349, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38228144

RESUMEN

Clinical exome and genome sequencing have revolutionized the understanding of human disease genetics. Yet many genes remain functionally uncharacterized, complicating the establishment of causal disease links for genetic variants. While several scoring methods have been devised to prioritize these candidate genes, these methods fall short of capturing the expression heterogeneity across cell subpopulations within tissues. Here, we introduce single-cell tissue-specific gene prioritization using machine learning (STIGMA), an approach that leverages single-cell RNA-seq (scRNA-seq) data to prioritize candidate genes associated with rare congenital diseases. STIGMA prioritizes genes by learning the temporal dynamics of gene expression across cell types during healthy organogenesis. To assess the efficacy of our framework, we applied STIGMA to mouse limb and human fetal heart scRNA-seq datasets. In a cohort of individuals with congenital limb malformation, STIGMA prioritized 469 variants in 345 genes, with UBA2 as a notable example. For congenital heart defects, we detected 34 genes harboring nonsynonymous de novo variants (nsDNVs) in two or more individuals from a set of 7,958 individuals, including the ortholog of Prdm1, which is associated with hypoplastic left ventricle and hypoplastic aortic arch. Overall, our findings demonstrate that STIGMA effectively prioritizes tissue-specific candidate genes by utilizing single-cell transcriptome data. The ability to capture the heterogeneity of gene expression across cell populations makes STIGMA a powerful tool for the discovery of disease-associated genes and facilitates the identification of causal variants underlying human genetic disorders.


Asunto(s)
Cardiopatías Congénitas , Transcriptoma , Humanos , Animales , Ratones , Exoma/genética , Cardiopatías Congénitas/genética , Secuenciación del Exoma , Aprendizaje Automático , Análisis de la Célula Individual/métodos , Enzimas Activadoras de Ubiquitina/genética
6.
Nature ; 623(7988): 772-781, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37968388

RESUMEN

Mouse models are a critical tool for studying human diseases, particularly developmental disorders1. However, conventional approaches for phenotyping may fail to detect subtle defects throughout the developing mouse2. Here we set out to establish single-cell RNA sequencing of the whole embryo as a scalable platform for the systematic phenotyping of mouse genetic models. We applied combinatorial indexing-based single-cell RNA sequencing3 to profile 101 embryos of 22 mutant and 4 wild-type genotypes at embryonic day 13.5, altogether profiling more than 1.6 million nuclei. The 22 mutants represent a range of anticipated phenotypic severities, from established multisystem disorders to deletions of individual regulatory regions4,5. We developed and applied several analytical frameworks for detecting differences in composition and/or gene expression across 52 cell types or trajectories. Some mutants exhibit changes in dozens of trajectories whereas others exhibit changes in only a few cell types. We also identify differences between widely used wild-type strains, compare phenotyping of gain- versus loss-of-function mutants and characterize deletions of topological associating domain boundaries. Notably, some changes are shared among mutants, suggesting that developmental pleiotropy might be 'decomposable' through further scaling of this approach. Overall, our findings show how single-cell profiling of whole embryos can enable the systematic molecular and cellular phenotypic characterization of mouse mutants with unprecedented breadth and resolution.


Asunto(s)
Discapacidades del Desarrollo , Embrión de Mamíferos , Mutación , Fenotipo , Análisis de Expresión Génica de una Sola Célula , Animales , Ratones , Núcleo Celular/genética , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Mutación con Ganancia de Función , Genotipo , Mutación con Pérdida de Función , Modelos Genéticos , Modelos Animales de Enfermedad
8.
Mol Diagn Ther ; 27(5): 553-561, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37552451

RESUMEN

Neurodegenerative disorders are typically characterized by late onset progressive damage to specific (sub)populations of cells of the nervous system that are essential for mobility, coordination, strength, sensation, and cognition. Addressing this selective cellular vulnerability has become feasible with the emergence of single-cell-omics technologies, which now represent the state-of-the-art approach to profile heterogeneity of complex tissues including human post-mortem brain at unprecedented resolution. In this review, we briefly recapitulate the experimental workflow of single-cell RNA sequencing and summarize the recent knowledge acquired with it in the most common neurodegenerative diseases: Parkinson's, Alzheimer's, Huntington's disease, and multiple sclerosis. We also discuss the possibility of applying single-cell approaches in the diagnostics and therapy of neurodegenerative disorders, as well as the limitations. While we are currently at the point of deeply exploring the transcriptomic changes in the affected cells, further technological developments hold a promise of manipulating the affected pathways once we understand them better.


Asunto(s)
Enfermedad de Huntington , Esclerosis Múltiple , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/genética , Encéfalo/metabolismo
9.
Blood Adv ; 7(21): 6520-6531, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37582288

RESUMEN

Acute myeloid leukemia with complex karyotype (CK-AML) is associated with poor prognosis, which is only in part explained by underlying TP53 mutations. Especially in the presence of complex chromosomal rearrangements, such as chromothripsis, the outcome of CK-AML is dismal. However, this degree of complexity of genomic rearrangements contributes to the leukemogenic phenotype and treatment resistance of CK-AML remains largely unknown. Applying an integrative workflow for the detection of structural variants (SVs) based on Oxford Nanopore (ONT) genomic DNA long-read sequencing (gDNA-LRS) and high-throughput chromosome confirmation capture (Hi-C) in a well-defined cohort of CK-AML identified regions with an extreme density of SVs. These rearrangements consisted to a large degree of focal amplifications enriched in the proximity of mammalian-wide interspersed repeat elements, which often result in oncogenic fusion transcripts, such as USP7::MVD, or the deregulation of oncogenic driver genes as confirmed by RNA-seq and ONT direct complementary DNA sequencing. We termed this novel phenomenon chromocataclysm. Thus, our integrative SV detection workflow combing gDNA-LRS and Hi-C enables to unravel complex genomic rearrangements at a very high resolution in regions hard to analyze by conventional sequencing technology, thereby providing an important tool to identify novel important drivers underlying cancer with complex karyotypic changes.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Cariotipo Anormal , Aberraciones Cromosómicas , Mutación , Genómica , Peptidasa Específica de Ubiquitina 7/genética
10.
Mov Disord ; 38(10): 1837-1849, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37482924

RESUMEN

BACKGROUND: A mitochondrial polygenic score (MGS) is composed of genes related to mitochondrial function and found to be associated with Parkinson's disease (PD) risk. OBJECTIVE: To investigate the impact of the MGS and lifestyle/environment on age at onset (AAO) in LRRK2 p.Gly2019Ser parkinsonism (LRRK2-PD) and idiopathic PD (iPD). METHODS: We included N = 486 patients with LRRK2-PD and N = 9259 with iPD from the Accelerating Medicines Partnership® Parkinson's Disease Knowledge Platform (AMP-PD), Fox Insight, and a Tunisian Arab-Berber founder population. Genotyping data were used to perform the MGS analysis. Additionally, lifestyle/environmental data were obtained from the PD Risk Factor Questionnaire (PD-RFQ). Linear regression models were used to assess the relationship between MGS, lifestyle/environment, and AAO. RESULTS: Our derived MGS was significantly higher in PD cases compared with controls (P = 1.1 × 10-8 ). We observed that higher MGS was significantly associated with earlier AAO in LRRK2-PD (P = 0.047, ß = -1.40) and there was the same trend with a smaller effect size in iPD (P = 0.231, ß = 0.22). There was a correlation between MGS and AAO in LRRK2-PD patients of European descent (P = 0.049, r = -0.12) that was visibly less pronounced in Tunisians (P = 0.449, r = -0.05). We found that the MGS interacted with caffeinated soda consumption (P = 0.003, ß = -5.65) in LRRK2-PD and with tobacco use (P = 0.010, ß = 1.32) in iPD. Thus, patients with a high MGS had an earlier AAO only if they consumed caffeinated soda or were non-smokers. CONCLUSIONS: The MGS was more strongly associated with earlier AAO in LRRK2-PD compared with iPD. Caffeinated soda consumption or tobacco use interacted with MGS to predict AAO. Our study suggests gene-environment interactions as modifiers of AAO in LRRK2-PD. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Proteínas Serina-Treonina Quinasas , Humanos , Proteínas Serina-Treonina Quinasas/genética , Enfermedad de Parkinson/complicaciones , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Edad de Inicio , Factores de Riesgo , Estilo de Vida , Mutación
11.
Genet Med ; 25(11): 100928, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37427568

RESUMEN

PURPOSE: HOXD13 is an important regulator of limb development. Pathogenic variants in HOXD13 cause synpolydactyly type 1 (SPD1). How different types and positions of HOXD13 variants contribute to genotype-phenotype correlations, penetrance, and expressivity of SPD1 remains elusive. Here, we present a novel cohort and a literature review to elucidate HOXD13 phenotype-genotype correlations. METHODS: Patients with limb anomalies suggestive of SPD1 were selected for analysis of HOXD13 by Sanger sequencing, repeat length analysis, and next-generation sequencing. Literature was reviewed for HOXD13 heterozygotes. Variants were annotated for phenotypic data. Severity was calculated, and cluster and decision-tree analyses were performed. RESULTS: We identified 98 affected members of 38 families featuring 11 different (likely) causative variants and 4 variants of uncertain significance. The most frequent (25/38) were alanine repeat expansions. Phenotypes ranged from unaffected heterozygotes to severe osseous synpolydactyly, with intra- and inter-familial heterogeneity and asymmetry. A literature review provided 160 evaluable affected members of 49 families with SPD1. Computer-aided analysis only corroborated a positive correlation between alanine repeat length and phenotype severity. CONCLUSION: Our findings support that HOXD13-protein condensation in addition to haploinsufficiency is the molecular pathomechanism of SPD1. Our data may, also, facilitate the interpretation of synpolydactyly radiographs by future automated tools.


Asunto(s)
Proteínas de Homeodominio , Sindactilia , Humanos , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Sindactilia/genética , Genotipo , Fenotipo , Linaje , Alanina/genética , Mutación
12.
Front Oncol ; 13: 1200897, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37384296

RESUMEN

Introduction: Resistance in anti-cancer treatment is a result of clonal evolution and clonal selection. In chronic myeloid leukemia (CML), the hematopoietic neoplasm is predominantly caused by the formation of the BCR::ABL1 kinase. Evidently, treatment with tyrosine kinase inhibitors (TKIs) is tremendously successful. It has become the role model of targeted therapy. However, therapy resistance to TKIs leads to loss of molecular remission in about 25% of CML patients being partially due to BCR::ABL1 kinase mutations, while for the remaining cases, various other mechanisms are discussed. Methods: Here, we established an in vitro-TKI resistance model against the TKIs imatinib and nilotinib and performed exome sequencing. Results: In this model, acquired sequence variants in NRAS, KRAS, PTPN11, and PDGFRB were identified in TKI resistance. The well-known pathogenic NRAS p.(Gln61Lys) variant provided a strong benefit for CML cells under TKI exposure visible by increased cell number (6.2-fold, p < 0.001) and decreased apoptosis (-25%, p < 0.001), proving the functionality of our approach. The transfection of PTPN11 p.(Tyr279Cys) led to increased cell number (1.7-fold, p = 0.03) and proliferation (2.0-fold, p < 0.001) under imatinib treatment. Discussion: Our data demonstrate that our in vitro-model can be used to study the effect of specific variants on TKI resistance and to identify new driver mutations and genes playing a role in TKI resistance. The established pipeline can be used to study candidates acquired in TKI-resistant patients, thereby providing new options for the development of new therapy strategies to overcome resistance.

14.
HGG Adv ; 4(3): 100200, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37216008

RESUMEN

Split-hand/foot malformation (SHFM) is a congenital limb defect most typically presenting with median clefts in hands and/or feet, that can occur in a syndromic context as well as in isolated form. SHFM is caused by failure to maintain normal apical ectodermal ridge function during limb development. Although several genes and contiguous gene syndromes are implicated in the monogenic etiology of isolated SHFM, the disorder remains genetically unexplained for many families and associated genetic loci. We describe a family with isolated X-linked SHFM, for which the causative variant could be detected after a diagnostic journey of 20 years. We combined well-established approaches including microarray-based copy number variant analysis and fluorescence in situ hybridization coupled with optical genome mapping and whole genome sequencing. This strategy identified a complex structural variant (SV) comprising a 165-kb gain of 15q26.3 material ([GRCh37/hg19] chr15:99795320-99960362dup) inserted in inverted position at the site of a 38-kb deletion on Xq27.1 ([GRCh37/hg19] chrX:139481061-139518989del). In silico analysis suggested that the SV disrupts the regulatory framework on the X chromosome and may lead to SOX3 misexpression. We hypothesize that SOX3 dysregulation in the developing limb disturbed the fine balance between morphogens required for maintaining AER function, resulting in SHFM in this family.


Asunto(s)
Deformidades Congénitas de las Extremidades , Humanos , Hibridación Fluorescente in Situ , Deformidades Congénitas de las Extremidades/genética , Sitios Genéticos , Factores de Transcripción SOXB1/genética
15.
J Intern Med ; 294(4): 397-412, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37211972

RESUMEN

Molecular diagnostics is a cornerstone of modern precision medicine, broadly understood as tailoring an individual's treatment, follow-up, and care based on molecular data. In rare diseases (RDs), molecular diagnoses reveal valuable information about the cause of symptoms, disease progression, familial risk, and in certain cases, unlock access to targeted therapies. Due to decreasing DNA sequencing costs, genome sequencing (GS) is emerging as the primary method for precision diagnostics in RDs. Several ongoing European initiatives for precision medicine have chosen GS as their method of choice. Recent research supports the role for GS as first-line genetic investigation in individuals with suspected RD, due to its improved diagnostic yield compared to other methods. Moreover, GS can detect a broad range of genetic aberrations including those in noncoding regions, producing comprehensive data that can be periodically reanalyzed for years to come when further evidence emerges. Indeed, targeted drug development and repurposing of medicines can be accelerated as more individuals with RDs receive a molecular diagnosis. Multidisciplinary teams in which clinical specialists collaborate with geneticists, genomics education of professionals and the public, and dialogue with patient advocacy groups are essential elements for the integration of precision medicine into clinical practice worldwide. It is also paramount that large research projects share genetic data and leverage novel technologies to fully diagnose individuals with RDs. In conclusion, GS increases diagnostic yields and is a crucial step toward precision medicine for RDs. Its clinical implementation will enable better patient management, unlock targeted therapies, and guide the development of innovative treatments.


Asunto(s)
Medicina de Precisión , Enfermedades Raras , Humanos , Medicina de Precisión/métodos , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Enfermedades Raras/terapia , Genómica/métodos , Análisis de Secuencia de ADN , Progresión de la Enfermedad
16.
bioRxiv ; 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37066300

RESUMEN

The house mouse, Mus musculus, is an exceptional model system, combining genetic tractability with close homology to human biology. Gestation in mouse development lasts just under three weeks, a period during which its genome orchestrates the astonishing transformation of a single cell zygote into a free-living pup composed of >500 million cells. Towards a global framework for exploring mammalian development, we applied single cell combinatorial indexing (sci-*) to profile the transcriptional states of 12.4 million nuclei from 83 precisely staged embryos spanning late gastrulation (embryonic day 8 or E8) to birth (postnatal day 0 or P0), with 2-hr temporal resolution during somitogenesis, 6-hr resolution through to birth, and 20-min resolution during the immediate postpartum period. From these data (E8 to P0), we annotate dozens of trajectories and hundreds of cell types and perform deeper analyses of the unfolding of the posterior embryo during somitogenesis as well as the ontogenesis of the kidney, mesenchyme, retina, and early neurons. Finally, we leverage the depth and temporal resolution of these whole embryo snapshots, together with other published data, to construct and curate a rooted tree of cell type relationships that spans mouse development from zygote to pup. Throughout this tree, we systematically nominate sets of transcription factors (TFs) and other genes as candidate drivers of the in vivo differentiation of hundreds of mammalian cell types. Remarkably, the most dramatic shifts in transcriptional state are observed in a restricted set of cell types in the hours immediately following birth, and presumably underlie the massive changes in physiology that must accompany the successful transition of a placental mammal to extrauterine life.

17.
Nat Commun ; 14(1): 2034, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041138

RESUMEN

Heterotopic ossification is a disorder caused by abnormal mineralization of soft tissues in which signaling pathways such as BMP, TGFß and WNT are known key players in driving ectopic bone formation. Identifying novel genes and pathways related to the mineralization process are important steps for future gene therapy in bone disorders. In this study, we detect an inter-chromosomal insertional duplication in a female proband disrupting a topologically associating domain and causing an ultra-rare progressive form of heterotopic ossification. This structural variant lead to enhancer hijacking and misexpression of ARHGAP36 in fibroblasts, validated here by orthogonal in vitro studies. In addition, ARHGAP36 overexpression inhibits TGFß, and activates hedgehog signaling and genes/proteins related to extracellular matrix production. Our work on the genetic cause of this heterotopic ossification case has revealed that ARHGAP36 plays a role in bone formation and metabolism, outlining first details of this gene contributing to bone-formation and -disease.


Asunto(s)
Proteínas Hedgehog , Osificación Heterotópica , Femenino , Humanos , Tejido Conectivo/metabolismo , Proteínas Hedgehog/metabolismo , Osificación Heterotópica/metabolismo , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta
18.
Eur J Med Genet ; 66(7): 104774, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37120078

RESUMEN

In this study, we aimed to examine the diagnostic yield achieved by applying a trio approach in exome sequencing (ES) and the interdependency between the clinical specificity in families with neurodevelopmental delay. Thirty-seven families were recruited and trio-ES as well as three criteria for estimating the clinical phenotypic specificity were suggested and applied to the underaged children. All our patients showed neurodevelopmental delay and most of them a large spectrum of congenital anomalies. Applying the pathogenicity guidelines of the American College of Medical Genetics (ACMG), likely pathogenic (29.7%) and pathogenic variants (8.1%) were found in 40,5% of our index patients. Additionally, we found four variants of uncertain significance (VUS; according to ACMG) and two genes of interest (GOI; going beyond ACMG classification) (GLRA4, NRXN2). Spastic Paraplegia 4 (SPG4) caused by a formerly known SPAST variant was diagnosed in a patient with a complex phenotype, in whom a second genetic disorder may be present. A potential pathogenic variant linked to severe intellectual disability in GLRA4 requires further investigation. No interdependency between the diagnostic yield and the clinical specificity of the phenotypes could be observed. In consequence, trio-ES should be used early in the diagnostic process, independently from the specificity of the patient.


Asunto(s)
Discapacidad Intelectual , Humanos , Secuenciación del Exoma , Fenotipo , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Espastina/genética
19.
Nature ; 617(7961): 616-622, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36972684

RESUMEN

Steroid hormone receptors are ligand-binding transcription factors essential for mammalian physiology. The androgen receptor (AR) binds androgens mediating gene expression for sexual, somatic and behavioural functions, and is involved in various conditions including androgen insensitivity syndrome and prostate cancer1. Here we identified functional mutations in the formin and actin nucleator DAAM2 in patients with androgen insensitivity syndrome. DAAM2 was enriched in the nucleus, where its localization correlated with that of the AR to form actin-dependent transcriptional droplets in response to dihydrotestosterone. DAAM2 AR droplets ranged from 0.02 to 0.06 µm3 in size and associated with active RNA polymerase II. DAAM2 polymerized actin directly at the AR to promote droplet coalescence in a highly dynamic manner, and nuclear actin polymerization is required for prostate-specific antigen expression in cancer cells. Our data uncover signal-regulated nuclear actin assembly at a steroid hormone receptor necessary for transcription.


Asunto(s)
Actinas , Forminas , Proteínas Nucleares , Receptores Androgénicos , Transcripción Genética , Humanos , Actinas/metabolismo , Síndrome de Resistencia Androgénica/genética , Síndrome de Resistencia Androgénica/metabolismo , Andrógenos/farmacología , Andrógenos/metabolismo , Forminas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Nucleares/metabolismo , Polimerizacion/efectos de los fármacos , Antígeno Prostático Específico/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Receptores Androgénicos/metabolismo , ARN Polimerasa II/metabolismo , Transducción de Señal/efectos de los fármacos , Esteroides/metabolismo , Esteroides/farmacología , Testosterona/análogos & derivados , Transcripción Genética/efectos de los fármacos
20.
Nat Commun ; 14(1): 1475, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36928426

RESUMEN

Split-Hand/Foot Malformation type 3 (SHFM3) is a congenital limb malformation associated with tandem duplications at the LBX1/FGF8 locus. Yet, the disease patho-mechanism remains unsolved. Here we investigate the functional consequences of SHFM3-associated rearrangements on chromatin conformation and gene expression in vivo in transgenic mice. We show that the Lbx1/Fgf8 locus consists of two separate, but interacting, regulatory domains. Re-engineering of a SHFM3-associated duplication and a newly reported inversion in mice results in restructuring of the chromatin architecture. This leads to ectopic activation of the Lbx1 and Btrc genes in the apical ectodermal ridge (AER) in an Fgf8-like pattern induced by AER-specific enhancers of Fgf8. We provide evidence that the SHFM3 phenotype is the result of a combinatorial effect on gene misexpression in the developing limb. Our results reveal insights into the molecular mechanism underlying SHFM3 and provide conceptual framework for how genomic rearrangements can cause gene misexpression and disease.


Asunto(s)
Factor 8 de Crecimiento de Fibroblastos , Reordenamiento Génico , Deformidades Congénitas de las Extremidades , Animales , Ratones , Expresión Génica , Proteínas de Homeodominio/genética , Deformidades Congénitas de las Extremidades/genética , Fenotipo , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...